23 research outputs found

    The role of unicellular cyanobacteria in nitrogen fixation and assimilation in subtropical marine waters

    Get PDF
    Biological N2 fixation constitutes the major source of nitrogen in open ocean systems, regulating the marine nitrogen inventory and primary productivity. Symbiotic relationships between phytoplankton and N2 fixing microorganisms (diazotrophs) have been suggested to play a significant role in the ecology and biogeochemistry in these oceanic regions. The widely distributed, uncultured N2 fixing cyanobacterium UCYN A was suggested to live in symbiosis since it has unprecedented genome reduction, including the lack of genes encoding for oxygen evolving photosystem II and the tricarboxylic acid cycle. This thesis aims to study carbon and nitrogen metabolism on field populations of UCYN A using molecular biology, as well as mass spectrometry tools to visualize metabolic activity on a single cell scale. The development of a 16S rRNA oligonucleotide probe specifically targeting UCYN A cells and its successful application on environmental samples (Manuscript I and II) revealed a symbiotic partnership with a unicellular prymnesiophyte. We demonstrated a nutrient transfer in carbon and nitrogen compounds between these two partner cells, providing an explanation how these diazotrophs thrive in open ocean systems. Further, UCYN A can also associate with globally abundant calcifying prymnesiophyte members, e.g. Braarudosphaera bigelowii, indicating that this symbiosis might impact the efficiency of the biological carbon pump. In manuscript III, we provided quantitative information on the cellular abundance and distribution of UCYN A cells in the North Atlantic Ocean and identified the eukaryotic partner cell as Haptophyta (including prymnesiophyte) via double Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD FISH). The UCYN A Haptophyta association was the dominant form (87.0±6.1%) over free living UCYN A cells. Interestingly, we also detected UCYN A cells living in association with unknown eukaryotes and non calcifying Haptophyta cells, raising questions about the host specificity. During a follow up study (Manuscript IV), we conducted various nutrient amendment experiments (including iron, phosphorus, ammonium nitrate and Saharan Dust) in order to examine physiological interactions between individual UCYN A and Haptophyta cells. Single cell measurements using nanometer scale secondary ion mass spectrometry (nanoSIMS) revealed a tight physiological coupling in the transfer of carbon (R2 = 0.6232; n = 44) and nitrogen (R2 = 0.9659; n = 44) between host and symbiont. N2 fixation was mainly stimulated when iron rich Saharan Dust was added, emphasizing on aeolian dust deposition in seawater as a major parameter in constraining N2 fixation of UCYN A. Moreover, when fixed nitrogen species (ammonium and nitrate) were added, a third unknown microbial partner cell was observed within individual UCYN A Haptophyta associations, but their menaing is unclear. Based on this thesis work we revealed how UCYN A cells thrive in the environment and established a culture independent technique to assess the in situ activity in respect to CO2 and N2 fixation of this ecological relevant group of microorganisms. Furthermore, this unusual partnership between a cyanobacterium and a unicellular alga is a model for symbiosis and is analogous to plastid and organismal evolution, and if calcifying, may have important implications for past and present oceanic N2 fixation

    Circulation and Oxygen Distribution in the Tropical Atlantic Cruise No. 80, Leg 1; October 26 to November 23, 2009 Mindelo (Cape Verde) to Mindelo (Cape Verde)

    Get PDF
    METEOR cruise 80/1 was a contribution to the SFB 754 “Climate-Biogeochemistry Interactions in the Tropical Ocean”. Shipboard, glider and moored observations are used to study the temporal and spatial variability of physical and biogeochemical parameters within the oxygen minimum zone (OMZ) of the tropical North Atlantic. As part of the BMBF “Nordatlantik” project, it further focuses on the equatorial current system including the Equatorial Undercurrent (EUC) and intermediate currents below. During the cruise, hydrographic station observations were performed using a CTD/O2 rosette, including water sampling for salinity, oxygen, nutrients and other biogeochemical tracers. Underway current measurements were successfully carried out with the 75 kHz ADCP borrowed from R/V POSEIDON during the first part of the cruise, and R/V METEOR’s 38 kHz ADCP during the second part. During M80/1, an intensive mooring program was carried out with 8 mooring recoveries and 8 mooring deployments. Right at the beginning of the cruise, a multidisciplinary mooring near the Cape Verde Islands was recovered and redeployed. Within the framework of SFB 754, two moorings with CTD/O2 profilers were recovered and redeployed with other instrumentation in the center and at the southern rim of the OMZ of the tropical North Atlantic. The equatorial mooring array as part of BMBF “North Atlantic” project consists of 5 current meter moorings along 23°W between 2°S and 2°N. It is aimed at quantifying the variability of the thermocline water supply toward the equatorial cold tongue which develops east of 10°W during boreal summer. Several glider missions were performed during the cruise. One glider was recovered that was deployed two months earlier. Another glider was deployed for two short term missions, near the equator for about 8 days and near 8°N for one day. This glider was equipped with a new microstructure probe in addition to standard sensors, i.e. CTD/O2, chlorophyll and turbidity

    Draft genome sequence of marine alphaproteobacterial strain HIMB11, the first cultivated representative of a unique lineage within the Roseobacter clade possessing an unusually small genome

    Get PDF
    © The Author(s), 2014. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Standards in Genomic Sciences 9 (2014): 632-645, doi:10.4056/sigs.4998989.Strain HIMB11 is a planktonic marine bacterium isolated from coastal seawater in Kaneohe Bay, Oahu, Hawaii belonging to the ubiquitous and versatile Roseobacter clade of the alphaproteobacterial family Rhodobacteraceae. Here we describe the preliminary characteristics of strain HIMB11, including annotation of the draft genome sequence and comparative genomic analysis with other members of the Roseobacter lineage. The 3,098,747 bp draft genome is arranged in 34 contigs and contains 3,183 protein-coding genes and 54 RNA genes. Phylogenomic and 16S rRNA gene analyses indicate that HIMB11 represents a unique sublineage within the Roseobacter clade. Comparison with other publicly available genome sequences from members of the Roseobacter lineage reveals that strain HIMB11 has the genomic potential to utilize a wide variety of energy sources (e.g. organic matter, reduced inorganic sulfur, light, carbon monoxide), while possessing a reduced number of substrate transporters.We gratefully acknowledge the support of the Gordon and Betty Moore Foundation, which funded the sequencing of this genome. Annotation was performed as part of the 2011 C-MORE Summer Course in Microbial Oceanography (http://cmore.soest.hawaii.edu/summercourse/2011/index.htm), with support by the Agouron Institute, the Gordon and Betty Moore Foundation, the University of Hawaii and Manoa School of Ocean and Earth Science and Technology (SOEST), and the Center for Microbial Oceanography: Research and Education (C-MORE), a National Science Foundation-funded Science and Technology Center (award No. EF0424599)

    Die Rolle einzelliger Cyanobakterien in der Fixierung und Assimilierung von atmosphärischem Stickstoffgas in subtropischen marinen Gewässern

    No full text
    Biological N2 fixation constitutes the major source of nitrogen in open ocean systems, regulating the marine nitrogen inventory and primary productivity. Symbiotic relationships between phytoplankton and N2 fixing microorganisms (diazotrophs) have been suggested to play a significant role in the ecology and biogeochemistry in these oceanic regions. The widely distributed, uncultured N2 fixing cyanobacterium UCYN A was suggested to live in symbiosis since it has unprecedented genome reduction, including the lack of genes encoding for oxygen evolving photosystem II and the tricarboxylic acid cycle. This thesis aims to study carbon and nitrogen metabolism on field populations of UCYN A using molecular biology, as well as mass spectrometry tools to visualize metabolic activity on a single cell scale. The development of a 16S rRNA oligonucleotide probe specifically targeting UCYN A cells and its successful application on environmental samples (Manuscript I and II) revealed a symbiotic partnership with a unicellular prymnesiophyte. We demonstrated a nutrient transfer in carbon and nitrogen compounds between these two partner cells, providing an explanation how these diazotrophs thrive in open ocean systems. Further, UCYN A can also associate with globally abundant calcifying prymnesiophyte members, e.g. Braarudosphaera bigelowii, indicating that this symbiosis might impact the efficiency of the biological carbon pump. In manuscript III, we provided quantitative information on the cellular abundance and distribution of UCYN A cells in the North Atlantic Ocean and identified the eukaryotic partner cell as Haptophyta (including prymnesiophyte) via double Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD FISH). The UCYN A Haptophyta association was the dominant form (87.0±6.1%) over free living UCYN A cells. Interestingly, we also detected UCYN A cells living in association with unknown eukaryotes and non calcifying Haptophyta cells, raising questions about the host specificity. During a follow up study (Manuscript IV), we conducted various nutrient amendment experiments (including iron, phosphorus, ammonium nitrate and Saharan Dust) in order to examine physiological interactions between individual UCYN A and Haptophyta cells. Single cell measurements using nanometer scale secondary ion mass spectrometry (nanoSIMS) revealed a tight physiological coupling in the transfer of carbon (R2 = 0.6232; n = 44) and nitrogen (R2 = 0.9659; n = 44) between host and symbiont. N2 fixation was mainly stimulated when iron rich Saharan Dust was added, emphasizing on aeolian dust deposition in seawater as a major parameter in constraining N2 fixation of UCYN A. Moreover, when fixed nitrogen species (ammonium and nitrate) were added, a third unknown microbial partner cell was observed within individual UCYN A Haptophyta associations, but their menaing is unclear. Based on this thesis work we revealed how UCYN A cells thrive in the environment and established a culture independent technique to assess the in situ activity in respect to CO2 and N2 fixation of this ecological relevant group of microorganisms. Furthermore, this unusual partnership between a cyanobacterium and a unicellular alga is a model for symbiosis and is analogous to plastid and organismal evolution, and if calcifying, may have important implications for past and present oceanic N2 fixation

    Trichodesmium physiological ecology and phosphate reduction in the western Tropical South Pacific

    No full text
    N2 fixation by the genus Trichodesmium is predicted to support a large proportion of the primary productivity across the oligotrophic oceans, regions that are considered among the largest biomes on Earth. Many of these environments remain poorly sampled, limiting our understanding of Trichodesmium physiological ecology in these critical oligotrophic regions. Trichodesmium colonies, communities that consisted of the Trichodesmium host and their associated microbiome, were collected across the oligotrophic western tropical South Pacific (WTSP). These samples were used to assess host clade distribution, host and microbiome (holobiont) metabolic potential, and functional gene expression, with a focus on identifying Trichodesmium physiological ecology in this region. Expression dynamics across the WTSP transect indicated potential co-limitation of Trichodesmium for phosphorus and iron. A gene cassette for phosphonate biosynthesis was detected in Trichodesmium, the expression of which co-varied with the abundance of Trichodesmium Clade III, which was unusually abundant relative to Clade I in this environment. Coincident with the expression of the gene cassette, phosphate reduction to phosphite and low molecular weight phosphonate compounds was measured in Trichodesmium colonies as well as genes that enable use of this reduced phosphorus in both Trichodesmium and the microbiome. Overall, these results highlight physiological strategies for survival by the Trichodesmium holobiont in the oligotrophic ocean, revealing mechanisms with the potential to influence the cycling of resources like nitrogen and phosphorus

    In situ identification and N2 and C fixation rates of uncultivated cyanobacteria populations

    No full text
    Nitrogen (N-2) fixation is a globally important process often mediated by diazotrophic cyanobacteria in the open ocean. In 2010, seawater was collected near Cape Verde to identify and measure N-2 and carbon (C) fixation by unicellular diazotrophic cyanobacteria. The nifH gene abundance (10(4)-10(6) nifH L-1) and nifH gene transcript abundance (10(2)-10(4) cDNA nifH L-1) for two unicellular groups, UCYN-A and UCYN-B, were detected. UCYN-A was also identified and quantified (10(4)-10(3) cells L-1) by new probes (UCYN-A732 and UCYN-A159) using Catalyzed Reporter Deposition-Fluorescence In Situ Hybridization (CARD-FISH) assays. The UCYN-A were observed as free cells or attached to a larger unidentified eukaryotic cell. A Halogen In Situ Hybridization-Secondary Ion Mass Spectrometry (HISH-SIMS) assay using the UCYN-A732 probe was applied on samples previously incubated with C-13-bicarbonate and N-15(2). Free UCYN-A cells were enriched in both C-13 and N-15 and estimated C and N-2 fixation rates for UCYN-A were lower compared to co-occurring unicellular cyanobacteria cells similar in size (3.1-5.6 mu m) and pigmentation to diazotroph Crocosphaera watsonii. Here, we identify and quantify two common co-occurring unicellular groups and measure their cellular activities by nanoSIM

    Trichodesmium physiological ecology and phosphate reduction in the western tropical South Pacific

    Get PDF
    International audienceN 2 fixation by the genus Trichodesmium is predicted to support a large proportion of the primary productivity across the oligotrophic oceans, regions that are considered among the largest biomes on Earth. Many of these environments remain poorly sampled, limiting our understanding of Trichodesmium physiological ecology in these critical oligotrophic regions. Trichodesmium colonies, communities that consist of the Trichodesmium host and their associated microbiome, were collected across the oligotrophic western tropical South Pacific (WTSP). These samples were used to assess host clade distribution, host and microbiome metabolic potential, and functional gene expression, with a focus on identifying Trichodesmium physiological ecology in this region. Genes sets related to phosphorus, iron, and phosphorus-iron co-limitation were dynamically expressed across the WTSP transect, suggestive of the importance of these resources in driving Trichodesmium physiological ecology in this region. A gene cassette for phosphonate biosynthesis was detected in Trichodesmium, the expression of which co-varied with the abundance of Trichodesmium Clade III, which was unusually abundant relative to Clade I in this environment. Coincident with the expression of the gene cassette, phosphate reduction to phosphite and low-molecular-weight phosphonate compounds was measured in Trichodesmium colonies. The expression of genes that enable use of such reduced-phosphorus compounds were also measured in both Trichodesmium and the microbiome. Overall , these results highlight physiological strategies employed by consortia in an undersampled region of the oligotrophic WTSP and reveal the molecular mechanisms underlying previously observed high rates of phosphorus reduction in Tri-chodesmium colonies

    Rapid microbial diversification of dissolved organic matter in oceanic surface waters leads to carbon sequestration

    Get PDF
    The pool of dissolved organic matter (DOM) in the deep ocean represents one of the largest carbon sinks on the planet. In recent years, studies have shown that most of this pool is recalcitrant, because individual compounds are present at low concentrations and because certain compounds seem resistant to microbial degradation. The formation of the diverse and recalcitrant deep ocean DOM pool has been attributed to repeated and successive processing of DOM by microorganisms over time scales of weeks to years. Little is known however, about the transformation and cycling that labile DOM undergoes in the first hours upon its release from phytoplankton. Here we provide direct experimental evidence showing that within hours of labile DOM release, its breakdown and recombination with ambient DOM leads to the formation of a diverse array of new molecules in oligotrophic North Atlantic surface waters. Furthermore, our results reveal a preferential breakdown of N and P containing molecules versus those containing only carbon. Hence, we show the preferential breakdown and molecular diversification are the crucial first steps in the eventual formation of carbon rich DOM that is resistant to microbial remineralization

    Computing nonsimple polygons of minimum perimeter

    No full text
    We provide exact and approximation methods for solving a geometric relaxation of the Traveling Salesman Problem (TSP) that occurs in curve reconstruction: for a given set of vertices in the plane, the problem Minimum Perimeter Polygon (MPP) asks for a (not necessarily simply connected) polygon with shortest possible boundary length. Even though the closely related problem of finding a minimum cycle cover is polynomially solvable by matching techniques, we prove how the topological structure of a polygon leads to NP-hardness of the MPP. On the positive side, we show how to achieve a constant-factor approximation

    Computing nonsimple polygons of minimum perimeter

    No full text
    We consider the Minimum Perimeter Polygon Problem (MP3): for a given set V of points in the plane, find a polygon P with holes that has vertex set V , such that the total boundary length is smallest possible. The MP3 can be considered a natural geometric generalization of the Traveling Salesman Problem (TSP), which asks for a simple polygon with minimum perimeter. Just like the TSP, the MP3 occurs naturally in the context of curve reconstruction. Even though the closely related problem of finding a minimum cycle cover is polynomially solvable by matching techniques, we prove how the topological structure of a polygon leads to NP-hardness of the MP3. On the positive side, we provide constant-factor approximation algorithms. In addition to algorithms with theoretical worst-case guarantess, we provide practical methods for computing provably optimal solutions for relatively large instances, based on integer programming. An additional difficulty compared to the TSP is the fact that only a subset of subtour constraints is valid, depending not on combinatorics, but on geometry. We overcome this difficulty by establishing and exploiting geometric properties. This allows us to reliably solve a wide range of benchmark instances with up to 600 vertices within reasonable time on a standard machine. We also show that restricting the set of connections between points to edges of the Delaunay triangulation yields results that are on average within 0.5% of the optimum for large classes of benchmark instances. \u3cbr/\u3e\u3cbr/\u3e\u3cbr/\u3e\u3cbr/\u3
    corecore